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ABSTRACT

The impact of slip on micropolar �uid through inclined tapering stenosed
artery having permeable walls is studied. To compute the phenomena of
Nanoparticle and Temperature pro�les, Homotopy Perturbation Method
(HPM) is considered. The analysis with respect to di�erent �ow pa-
rameters on �ow impedance (λ̄) and shear stress (τh) are anticipated
by deriving equations for the �ow characteristics and solutions are ob-
tained. The stream lines in diverging region (ξ>0), Non-tapered region
(ξ=0) and converging region (ξ<0) are drawn to view �ow patterns for
di�erent values of the �uid �ow parameters.

Keywords: Tapered artery, stenosis, micropolar �uid, permeability con-
stant, shape parameter.
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1. Introduction

In human body, blood has a signi�cant and magnanimous role to be consid-
ered for multi-part blending. Experimental and Theoretical investigations of
the circulatory problems reveal that in�icting deaths in majority of instances
have been the subject of scienti�c research from past years. Stenosis is more
popularly observed valvular cardiovascular diseases in the developed and devel-
oping nations of the world. In recent days, many individuals are experiencing
cardiovascular diseases like Stenosis, which causes demise of individuals. Vas-
cular �uid dynamics study plays a signi�cant job over the improvement of
vascular stenosis. It is one of the human body's most serious heart disease
that results to cardiovascular system failure. Depending on the extent of the
stenosis the �uid circulation is disrupted.

Prasad et al. (2010) and Prasad et al. (2015) discussed the peristaltic trans-
port of micropolar and nano�uid in an inclined tube with e�ect on heat and
mass transport. Fluids with micro structure having referred to micropolar
�uids, belonging to the category of �uids with non-symmetrical stress tensor
referred to as a polar �uid.

Eringen (1966) presented the possibility of basic micro�uids to represent
concentrated suspensions of impartially light deformable substances in a viscous
�uid. These models of �uid �ow have numerous applications in engineering
and physiological problems. The impact of post-stenotic e�ects treating blood
as Bingham plastic �uid, dilatation and multiple stenosis through an artery
is explored by Kumar and Diwakar (2013). The mathematical modelling of
micropolar blood �ow under the body acceleration and magnetic �eld in a
stenosed artery is studied by Haghighi et al. (2019).

Many of the proposed theoretical facts and analysis on the blood �ow were
meticulously guessed that blood in the human body has a behaviour of Newto-
nian or non-Newtonian �uid. Researchers like Prasad and Yasa (2020), studied
the �ow of micropolar �uid with nanoparticles having non-uniform cross sec-
tion with multiple stenosis. A blood �ow model of micropolar �uid through a
tapered artery with a single stenosis is studied by Abdullah and Amin (2010).

Many of the proposed theoretical prototypes that are examined inside the
blood �ow of circular channel that has a single stenosis. This Newtonian blood
behavior argument is worthy for high shear rate stream. However, blood ex-
hibits non-Newtonian properties in many cases. [Shukla et al. (1980), Muthu
et al. (2008), Mandal (2005), Nasir and Alim (2017), Padmanabhan (1980)].
Most of these studies examined single-stenosis blood �ow in a circular tube.
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Akbar et al. (2014) have explored �ow of Nano�uid in tapered stenosed
arteries having permeable walls. Mekheimer and El Kot (2008) studied the
blood �ow model for the micropolar �uid through a tapered artery having
single stenosis. The blood supply of �uids inside the stenosed arteries, critically
analyzed by Akbar and Nadeem (2013). He (2000) and He (2005) explored the
applications of Homotopy perturbation technique.

In this research investigation article, the proposed study of micropolar �uid
�ow in tapered artery having permeable walls is presented and explained the
impact of di�erent �uid �ow parameters on �ow impedance and shear stress.

2. Mathematical Formulation

A Cylindrical coordinate system (r, θ, z) with r=0 as axis of symmetry of
the cylinder is considered such that z-axis is along the axis of artery. Consider
an incompressible micropolar �uid over an inclined tapering artery having the
stenosis with viscosity of �uid µ and density ρ.

The radial and circumferential direction be r and θ respectively The design
of inclined stenosed tapered artery is given by Srivastava and Saxena (1997).

Figure 1: Geometry of Inclined Tapered stenosed artery

Assuming the stenoses are mild and create in axisymmetric way. The radius
of the cylindrical shaped tube is

h = R(z) =

{
f(z) − [1 − η

(
bn−1(z − a) − (z − a)n

)
] ; a ≤ z ≤ a+ b

f(z) ; otherwise
(1)
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where R(z) and R0 are respectively the radius of tapered arterial segment in
the stenotic and non-tapered arterial segment in the non-stenotic regions.

Here f(z)=R0+ξz, ξ denotes tapering parameter. b is the stenosis length,
n≥2 is the shape parameter that determines stenosis shape. η is a parameter,

given by η = δ
R0bn

(n
1

n−1

n−1 ), where δ is the maximum stenosis height at z=a+
b

n
1

n−1
.

The equations for the steady �ow of micro polar �uid are (Mekheimer and
El Kot (2008))

(∇·W ) = 0 (2)

ρ(W ·∇W ) = −(∇P ) + (K∇×W ) + (µ+K)∇2W (3)

ρj(W ·∇W ) = −(2KV ) + (K∇×W )− γ(∇×∇× V ) + (α+ β + γ)∇(∇ · V ). (4)

Here P is �uid pressure, j is microgyration parameter. K, µ are respectively
the coe�cients of vortex viscosities and shear stress. V and W are respectively
the micro rotation and velocity vectors. α,β,γ are material constants satisfying
inequalities given below

2µ+K ≥ 0, 3α+ β ≥ 0, γ ≥ |β|.

Thus, the equations for the �uid �ow are

∂wr

∂r
+
wr

r
+
∂wz

∂z
= 0 (5)

ρ

(
wr

∂wz

∂r
+ wz

∂wz

∂z

)
= −

∂P

∂z
+ (µ+K)

(
∂2wz

∂r2
+

1

r

∂wz

∂r
+
∂2wz

∂z2

)
+
K

r

∂(rvθ)

∂r
(6)

ρ

(
wr

∂wr

∂r
+ wz

∂wr

∂z

)
= −

∂P

∂r
+ (µ+K)

(
∂2wr

∂r2
+

1

r

∂wr

∂r
−
wr

r2

)
−K

∂vθ

∂z
(7)

ρj

(
wr

∂vθ

∂r
+ wz

∂vθ

∂z

)
= −2Kvθ −K

(
∂wz

∂r
−
∂wr

∂z

)
+ γ

(
∂

∂r

(
1

r

∂(rvθ)

∂r

)
+
∂2vθ

∂z2

)
.

(8)

Here, W=(wr, 0, wz) and V=(0, vθ, 0) are respectively the velocity and micro-
rotation vectors.

Introducing the non-dimensional variables

z̄= z
L , δ̄=

δ
R0

, r̄= r
R0

, w̄z=
wz
w0

, w̄r=
Lwr
w0δ

, w̄θ=
R0vθ
w0

, J̄= j
R2

0
, p̄= P

µw0L

R2
0

into (5) - (8), the equations are:

∂P

∂r
= −

cosα

F
(9)
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N

r

∂

∂r
(rvθ) +

∂2w

∂r2
+

1

r

∂w

∂r
+ (1−N)

sinα

F
+ (1−N)(Grθt +Brσ) = (1−N)

∂P

∂z
(10)

2vθ +
∂w

∂r
−

2−N
m2

∂

∂r

(
1

r

∂

∂r
(rvθ)

)
= 0 (11)

1

r

∂

∂r

(
r
∂θt

∂r

)
+Nb

∂σ

∂r

∂θt

∂r
+Nt

(
∂θt

∂r

)2

= 0 (12)

1

r

∂

∂r

(
r
∂σ

∂r

)
+
Nt

Nb

(
1

r

∂

∂r

(
r
∂θt

∂r

))
= 0. (13)

Here w=wz is velocity in the axial direction, N= k
µ+k

; (0 ≤ N < 1), m2=
R2

0k(2µ+k)

γ(µ+k)

(seeSrinivasacharya et al. (2003)), where N and m are respectively coupling
number and micropolar parameter. θt, σ, Nt, Nb, Br and Gr are temperature
pro�le, nanoparticle phenomena, thermophoresis parameter, Brownian motion
parameter, local nanoparticle Grashof number and local temperature Grashof
number.

The non-dimensional boundary conditions are:

∂w
∂r

= 0 , ∂θt
∂r

= 0 , ∂σ
∂r

= 0 at r = 0,

w = −k ∂w
∂r
, θt = 0, σ = 0 at r = h (z) ,

w is �nite at r = 0.

 (14)

3. Solution

The solutions of equations (12) and (13) are:

H(qt, θt) = (1− qt) [L(θt)− L(θ10)] + qt

[
L(θt) +Nb

∂σ

∂r

∂θt

∂r
+Nt

(
∂θt

∂r

)2
]
, (15)

H(qt, σ) = (1− qt) [L(σ)− L(σ10)] + qt

[
L(σ) +

Nt

Nb

(
1

r

∂

∂r

(
r
∂θt

∂r

))]
, (16)

where qt is the embedding parameter (0 ≤ qt ≤ 1). The linear operator is given
by L ≡ 1

r
∂
∂r

(
r ∂∂r
)
.

θ10 and σ10 are the initial guesses given by:

θ10(r, z) =

(
r2 − h2

4

)
, σ10(r, z) = −

(
r2 − h2

4

)
, (17)

θt(r, z) = θt0 + qtθt1 + q2t θt2 + · · · , (18)

σ(r, z) = σ0 + qtσ1 + q2t σ2 + · · · . (19)
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The series (18) and (19) are convergent in many cases. This convergent relies
upon the non-linear part of the expression. For qt=1, the solution for temper-
ature pro�le (θt) and nanoparticle phenomena (σ) are:

θt(r, z) =

(
r2 − h2

64

)
(Nb −Nt), (20)

σ(r, z) = −
(
r2 − h2

4

)(
Nt

Nb

)
. (21)

By substituting the equations (20) and (21) in (10), the velocity equation is

w(r, z) = (1−N)

(
r2 − h2

4
−
kr

2

)(
−
sinα

F
+
dP

dz

)
−N(r − h− k)vθ

+ (1−N)Br

(
Nt

Nb

)(
r4

64
−
r2h2

16
+

3h4

64
−
kr3

16
+
krh2

8

)
− (1−N)Gr(Nb −Nt)

(
r6

2304
−
r2h4

256
+

h6

288
−
kr5

384
+
krh4

128

)
. (22)

The dimension less �ux (q) is

q =

∫ h

0
2rwdr. (23)

By substituting the equation (22) in (23), the �ux is given by

q = (1−N)

(
h4

8
+
kh3

3

)(
sinα

F
−
dP

dz

)
+N(h3 + kh2)vθ

+ (1−N)Br

(
Nt

Nb

)(
0.02083h6 + 0.05833kh5

)
− (1−N)Gr(Nb −Nt)(

0.001627h8 + 0.004464kh7
)
. (24)

From the equation (24), dPdz can be obtained as

dP

dz
=

1(
h4

8
+ kh3

3

)[− q

1−N
+

(
h4

8
+
kh3

3

)(
sinα

F

)
+

N

1−N
(h3 + kh2)vθ −Gr(Nb −Nt)

(
0.001627h8 + 0.004464kh7

)
+

Br
Nt

Nb
(0.02083h6 + 0.05833kh5)

]
. (25)

The pressure drop per wave length ∆p = p(0) - p(λ) is

∆p = −
∫ 1
0
dP
dz
dz

⇒ ∆p =

∫ 1

0

1(
h4

8
+ kh3

3

)[ q

1−N
−
(
h4

8
+
kh3

3

)(
sinα

F

)
−

N

1−N
(h3 + kh2)vθ +Gr(Nb −Nt)

(
0.001627h8 + 0.004464kh7

)
−

Br
Nt

Nb
(0.02083h6 + 0.05833kh5)

]
dz. (26)
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The �ow resistance (or) �ow impedance (λ) is λ=∆p
q

⇒ λ =
1(

h4

8
+ kh3

3

)[ q

1−N
−
(
h4

8
+
kh3

3

)(
sinα

F

)
−

N

1−N
(h3 + kh2)vθ +Gr(Nb −Nt)

(
0.001627h8 + 0.004464kh7

)
−

Br
Nt

Nb
(0.02083h6 + 0.05833kh5)

]
dz. (27)

∆pn is pressure drop in the absence of stenosis (h = 1) and is attained from
equation (26) as

∆pn =

∫ 1

0

1(
1
8

+ k
3

)[ q

1−N
−
(

1

8
+
k

3

)(
sinα

F

)
−

N

1−N
(1 + k)vθ

+Gr(Nb −Nt) (0.001627 + 0.004464k)−

Br
Nt

Nb
(0.02083 + 0.05833k)

]
dz. (28)

The �ow impedance in the normal artery is (λn), given as

λn =
∆pn

q

=
1

q

∫ 1

0

1(
1
8

+ k
3

)[ q

1−N
−
(

1

8
+
k

3

)(
sinα

F

)
−

N

1−N
(1 + k)vθ +Gr(Nb −Nt) (0.001627 + 0.004464k)−

Br
Nt

Nb
(0.02083 + 0.05833k)

]
dz. (29)

The normalized impedance to the �ow is

λ̄ =
λ

λn
. (30)

Wall shear stress is

τh = −
h

2

dP

dz
(31)

=
h

2

1(
h4

8
+ kh3

3

)[ q

1−N
−
(
h4

8
+
kh3

3

)(
sinα

F

)
−

N

1−N
(h3 + kh2)vθ +Gr(Nb −Nt)

(
0.001627h8 + 0.004464kh7

)
−

Br
Nt

Nb
(0.02083h6 + 0.05833h5)

]
. (32)

When k = 0, the equations are coincides with Mekheimer and El Kot (2008).
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4. Results and Discussion

The equations (30) and (32) are equations for �ow impedance (λ̄) and shear
stress (τh) respectively. Using Mathematica 9.1, the impact of di�erent �ow
parameters on λ̄ and τh with heights of stenosis were determined numerically.

To determine the impact of various parameters on λ̄, the observations are
noted for diverging tapering, non-tapered artery and converging tapering and
are presented in Figures (2-9) for the values of local nanoparticle Grashof num-
ber (Br), local temperature Grashof number (Gr), Thermophoresis parameter
(Nt), Brownian motion number (Nb), Inclination (α), Shape parameter (n),
Permeability constant (k) and Volumetric �ow rate (q) under di�erent shapes
of stenosis.

It is seen that the λ̄ increases with the increase of Br, Nt, α and k and
decreases with Nt, n and q. It is observed that, with the increase of local
temperature Grashof number (Gr), the resistance to the �ow is also increasing.
But there is no much signi�cance upto δ = 0.04.

The impact of di�erent �uid �ow parameters on τh are shown in Figures
(10-17). It is shown that, τh enhances with the increase of Nb and q, but
decreases with Br, Gr, Nt, n, k and α.

Streamlines: Figure(18) displays the streamlines for Br. It is shown that,
as we increase Br, the bolus area is increasing and number of boluses are
decreasing. Figure(19) reveals the behaviour of stream lines with heights of
the stenosis (δ). It can be seen that the number of boluses is decreasing but
the volume of bolus is slowly increasing. Figure(20) shows that more number
of boluses are found with the increase of permeability constant (k), but bolus
size is diminished.

Figure 2: E�ect of δ on λ̄ with Br varying Figure 3: E�ect of δ on λ̄ with Gr varying
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Figure 4: E�ect of δ on λ̄ with Nt varying Figure 5: E�ect of δ on λ̄ with Nb varying

Figure 6: E�ect of δ on λ̄ with α varying Figure 7: E�ect of δ on λ̄ with n varying

Figure 8: Variation of δ on λ̄ with k varying Figure 9: Variation of δ on λ̄ with q varying
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Figure 10: Variation of δ on τh with Br varying Figure 11: Variation of δ on τh with Gr varying

Figure 12: Variation of δ on τh with Nt varying Figure 13: Variation of δ on τh with Nb varying

Figure 14: Variation of δ on τh with n varying Figure 15: Variation of δ on τh with k varying
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Figure 16: Variation of δ on τh with α varying Figure 17: Variation of δ on τh with q varying

Figure 18: Streamlines for Br=0.1, 0.15, 0.2

Figure 19: Streamlines for δ=0.6, 0.7, 0.8
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Figure 20: Streamlines for k=0.01, 0.03, 0.05

5. Conclusion

In this investigated research article, we presented micropolar �uid model in
an inclined tapered stenosed artery having permeable walls. The inferences of
this model are

1. The impedance to the �ow is getting higher with Br, α, k and getting
lower with n for diverging tapering, non-tapered artery and converging
tapering respectively.

2. It is interesting to note that, with the increase of Gr, the resistance to
the �ow is increasing with heights of the stenosis. But, this increase is
signi�cant only when the heights of the stenosis exceeds the value 0.04.

3. The velocity of the particles with the surrounding molecules (Nt) is noted
increasing with the stenosis height.

4. It is important to note that, with the increase of collision between the
molecules, the �ow resistance decreases. i.e., Brownian motion parameter
(Nb).

5. With the stenosis height expansion, the impact among the molecules rises
with wall shear stress.

6. The shear stress at the wall drops with the increase of Br, Gr, Nt, n, k
and inclination (α).

7. More number of boluses are found with the increase of Br, δ and k, but
the bolus size is slowly decreasing.

8. In the absence of permeability constant (k), the results are coincides with
Mekheimer and El Kot (2008).
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